
Checklist

Planning and 
evaluating STT

and LLMs for 
your voice app



This checklist is 
designed to guide CTOs, 
developers, and product 
managers through the 
foundational steps of 
planning and evaluating 
tools to  
and 
to existing products.

build voice apps
add audio features


It focuses on critical early-stage decisions, and 

should be used as a starting point before moving 

into development and implementation.



Clearly define the goals of your voice app, and map these to 
features

Identify your target users and the problems the app will solve

Outline how you will measure success
Ex: accuracy rates, user adoption, improved operational efficiency, etc.

3Planning and evaluating STT and LLMs for your voice app

Step 1

Define objectives

and use cases

Step 2

Make the buy vs. build 
decision

Estimate infrastructure costs, time to deploy, scalability,

and ongoing maintenance for both options



Consider building in-house if…

You have the in-house expertise to implement and maintain custom 
solutions

Open-source tools meet your needs without needing extensive 
customization

Long-term scalability is manageable with your internal resources

Consider using APIs if…

Speed to market is a priority

Your team lacks the hardware or expertise to manage custom solutions

You want a scalable and low-risk solution with ongoing improvements

4Planning and evaluating STT and LLMs for your voice app

Step 3

Define objectives and 
use cases
Questions to ask when evaluating LLMs:

What type of model best fits our needs—open-source or 
proprietary?
Consider customization requirements, cost, and in-house expertise.



What type of model best fits our needs—open-source or 
proprietary?
Consider customization requirements, cost, and in-house expertise.

How does the model perform in our key use cases?
Review benchmarks like TruthfulQA or HumanEval to assess performance in tasks like summarization, 

sentiment analysis, or text generation.

What is the cost structure for this LLM?
Understand token-based pricing, fine-tuning costs, and whether free credits are available for testing.

Does the model support our required languages and 
dialects?
If multilingual support is critical, evaluate the accuracy and language coverage.

What are the security and compliance standards?
Confirm whether the provider meets SOC 2, GDPR, or other relevant certifications.

Can this model handle our anticipated data volume and 
growth?
Check if the model's context window size and infrastructure can support scaling.

5Planning and evaluating STT and LLMs for your voice app

Questions to ask when evaluating STT systems:

Does the system offer advanced audio intelligence features?
Consider features like speaker diarization, sentiment analysis, custom vocabulary, and code-switching for 

multilingual conversations.

What are the latency capabilities?
For real-time applications, confirm whether the system meets low-latency requirements without sacrificing accuracy.

How well does the system support multiple languages and 
accents?
Test language detection and transcription accuracy for your target audience.



What is the pricing model?
Understand whether pricing is usage-based (per hour or per token) and ensure it aligns with your budget and 

scalability needs.

What deployment options are available?
Determine if the system can be hosted in the cloud, on-premise, or in an air-gapped environment to meet your 

security requirements.

6Planning and evaluating STT and LLMs for your voice app



5 best practices

for using STT

and LLMs for 
voice apps



Practice 1

Use LLMs to improve STT 
output and diarization

As you know all too well, LLM-powered features of voice apps are 

directly dependent on initial transcription quality.



Choosing a top-tier STT provider is the first step to avoiding problems 

down the line. But while transcription APIs have certainly reached 

unprecedented levels of accuracy in the last few years, it may in some 

instances be helpful to further enhance the quality of your transcripts 

with the help of LLMs.



Here are some of the most common techniques used to that end.

Domain-specific adaptations

LLMs fine-tuned on domain-specific data can recognize and correct 

jargon, technical terms, or industry-specific phrases and generate 

context-based suggestions for specialized vocabulary.

8Planning and evaluating STT and LLMs for your voice app



Take healthcare as an example. ASR systems are now commonly used in clinical 

settings to transcribe doctor-patient interactions into written records and 

prescriptions. To ensure ultimate information fidelity and avoid critical mistaked, 

LLMs rained in medical terminology can be integrated into the post-processing 

of medical records and correct errors and/or hallucinations in transcriptions, 

ensuring that specific terms (e.g. drug names) are transcribed perfectly.

Correcting errors and rephrasing

Because LLMs are typically trained on larger amounts of data than 

ASR models, they are better suited to identify more complex language 

patterns, context, and syntax. This makes them useful in spotting 

errors in transcripts, including misheard words, homophones, 

grammar issues and filler words.

Correcting punctuation

While most commercial providers do addres this issue at least to 

some extent, ASR systems can produce transcription output with 

imperfect punctuation or sentence boundaries. LLMs can be used to 

add paragraph breaks, capitalization, commas, periods, and 

question marks based on sentence context and improve readability. 

9Planning and evaluating STT and LLMs for your voice app

https://arxiv.org/pdf/2402.07658


Improving speaker diarization

For applications such as contact centers and meeting note-taking 

apps, knowing who spoke when and what is crucial. As per latest 

research, LLMs can leverage contextual hints to post-process the 

outputs from a speaker diarization system and improve transcript 

readability, reduce DER, and even autofill speaker names and roles.

10Planning and evaluating STT and LLMs for your voice app

https://arxiv.org/abs/2401.03506
https://arxiv.org/abs/2401.03506


Practice 2

Divide and conquer with a 
multi-model approach

When working with LLMs, try to combine multiple models for the 

optimal results. You can break tasks down into manageable chunks 

and assign them to different models depending on their capabilities 

and your objectives.

For instance, a more powerful model can orchestrate a complex task, 

while smaller models can handle minor ones. In the case of a note-

taking app, a more powerful model would be used to generate 

complex summaries or perform sentiment analysis, while a smaller 

model fills in details and performs tasks such as fact-checking and 

cross-referencing.



Some of our clients noted good performance when using Anthropic’s 

Haiku 3.3 for smaller tasks and Claude 3.5 for more complex 

operations.

11Planning and evaluating STT and LLMs for your voice app



12Planning and evaluating STT and LLMs for your voice app

A multi-model approach isn’t necessarily 
costlier for SMEs. Many vendors offer free 
credits for testing different LLMs. AWS, for 
example, now extends its free startup 
credits to AI models from Anthropic, Meta, 
Mistral AI, and Cohere.



Practice 3

Don’t resort to fine-tuning 
too early

Fine-tuning is a great technique for improving a model’s output, 

especially in specialized domains. However, it requires substantial 

computational resources and is heavily dependent on the data you're 

using—so collecting, cleaning, and preprocessing the right data can 

be a significant part of the process.



According to founders we interviewed in the note-taking domain, 

prompt engineering is generally a better starting point. Prompt 

engineering doesn’t require access to specialized hardware or large 

datasets — you can often substantially improve output by 

experimenting with different prompts and playing around with various 

models. 



As many of customer’s success stories show, some amazingly 

advanced AI assistants can be developed with prompt engineering 

alone.



Here are some best practices when it comes to prompt engineering:

13Planning and evaluating STT and LLMs for your voice app



Don’t settle for the first acceptable result

Prompt engineering requires iterative experimentation and model-specific 

adjustments.

Try various models and prompting techniques

Reiterate and experiment. One of the techniques that performed well 

for our clients is chain-of-thought (CoT) prompting, discussed 

previously.

Provide examples in your prompt and leverage 
metadata

Give examples to point towards desired outputs and include key 

metadata such as speaker identification, timing information, and any 

additional context (CRM enrichment, for example).



Keep in mind that models and their architectures tend to be quite 

different. Something can work with one model but not very well with 

another. You need to make up for that in your prompts and tweak them 

for each model.

14Planning and evaluating STT and LLMs for your voice app



Practice 4

Be mindful of context 
window size

When building products with LLMs, it’s crucial to align the model's 

context window capabilities with the task requirements.



Models like Google’s Gemini 1.5 Pro, with a 2-million-token input 

context window, excel at tasks needing vast input processing, such as 

summarization. However, its 8,192-token output limit can pose 

challenges for tasks requiring extensive outputs, like translation, 

where risks of misalignment or hallucinations increase.



In contrast, models like ChatGPT-4 offer smaller, more balanced 

context windows (4,000–20,000 tokens) that may better suit tasks like 

real-time conversation or coding assistance.

15Planning and evaluating STT and LLMs for your voice app



Some quick tips to address this

 Break complex tasks into smaller, manageable subtasks that fit 

within output token constraints. For example, split long translation 

tasks into sentence-level chunks to prevent autoregressive errors.




 Implement guardrails like constraining token prediction space or 

evaluating intermediate outputs for coherence. When large input 

contexts are unnecessary, preprocessing strategies such as 

chunking or prioritizing key sections can reduce computational 

costs and latency

 Experiment with different models to identify the best fit for your 

use case.

16Planning and evaluating STT and LLMs for your voice app



Practice 5

Don’t forget context 
windows' language bias

Context windows suffer from language bias, as the number of tokens 

required to represent a concept or word varies across languages. 

This disparity is especially dominant for under-represented 

languages, where it may take more tokens to convey the same 

information.



Take Hindi as an example. In English, a single word might be 

represented by one token, but in Hindi, the same word could require 

four tokens. As a result, models working with Hindi are four times 

slower, less precise, and must generate a significantly larger number 

of tokens to achieve the same outcome as when working with English.

17Planning and evaluating STT and LLMs for your voice app



“When dealing with under-represented 
languages, the context window size is 
effectively reduced. If a model supports an 
8,000-token context window in English, the 
equivalent input for Hindi might only be 
around 2,000 tokens. The disparity becomes 
even more evident in the output.”

If you’re working with under-represented languages, here are some 

techniques to try besides fine-tuning the model

 Choose models trained on tokenizers, optimized for compact 

representations of specific languages, helping to reduce the token 

disparity

 Optimize input preprocessing to remove unnecessary tokens, such as 

reducing verbose expressions, simplifying syntax, or eliminating non-

essential metadata

 Break large texts into language-specific chunks and process them 

independently to ensure efficient use of the context window.

Jean-Louis Queguiner


Co-founder and CEO at Gladia

18Planning and evaluating STT and LLMs for your voice app



Request a personalized 
demo to see our product 
in action.

Book a demo

About Gladia
From async to live streaming, Gladia's API empowers your platform 

with accurate, multilingual speech-to-text and actionable insights.



Over 150,000 users and over 1,000 enterprise customers, including 

Attention, Ausha, Circleback, Method Financial, Recall, and VEED.IO 

trust us to deliver fast and accurate transcriptions that can be easily 

scaled and integrated into existing tech stacks.



With Gladia, you can accelerate your roadmap with top-tier models for 

speech recognition and analysis, with industry-leading performance.

https://www.gladia.io/demo-request

