
E B O O K

STT Buyer’s

Guide for

Voice Agents

Voice AI has rapidly evolved from early experiments
to production deployment. Today, enterprises expect
voice agents that handle entire customer
interactions end-to-end, reflecting a new level of
trust in the technology. Every millisecond of latency,
every misheard word, and every ill-timed response
can make the difference between a seamless
experience and a frustrating one.

This guide is designed to help CTOs and voice AI
agent builders make smart technology decisions for
each layer of that stack – from speech-to-text (STT)
and large language models (LLMs) to text-to-speech
(TTS) and orchestration. We’ll draw on industry best
practices and Gladia’s experience powering
hundreds of audio applications to provide an
actionable roadmap.

Introduction

The voice agent tech stack

Speech-to-text (STT)

 Concurrency

 Latency

 Partial results

 Accuracy

 Multilingual support

 Features

Lessons from the field: Thoughtly

Large Language Model (LLM)

Text-to-speech (TTS)

Final thoughts

01

02

03

04

05

06

08

09

11

14

15

17

19

Table of Contents

The voice agent
tech stack
Building a voice agent is fundamentally an integration
challenge. A voice AI system isn’t a single model or
program, but a pipeline of specialized components working
in unison. This typically involves:

Speech-to-text (STT) – converting the user’s audio into
text transcripts for the AI to understand.

Large Language Model (LLM) – interpreting the
transcribed text and formulating a response

Text-to-speech (TTS) – converting the AI’s response
text back into spoken audio.

Surrounding these is the orchestration layer. It manages
the sequence and timing of each step (including voice
input and output), handles turn-taking, routes data to
external APIs or databases, and enforces any business
rules.

Voice input

Orchestration layer

The orchestration layer makes sure the STT, LLM, and
TTS engines all interoperate in concert, in real time.

Natural language

understanding & processing
(LLM)

Speech recognition
(ASR/STT)

Text-to-speech output
(TTS)

01

Real-time vs cascading architecture

“Concurrency and speech-to-speech are where voice
agents are heading, and speech-to-speech (S2S) is
incredible for ultra-real-time, expressive conversations. But
in the field, I still recommend the classic STT-LLM-TTS
stack for most business use cases. S2S today often means
limited voice and feature control, proprietary lock-in, and
higher costs at scale, plus fewer mature open or on-prem
options.

The modular pipeline is slower by a fraction of a second, but
it’s proven, swappable, easier to customize or clone voices,
and simpler to deploy privately for compliance. For clients,
that flexibility and control usually wins.”

Nour Siakir Oglou

Voice AI developer & CEO

SANAVA

02

Speech-to-text (STT)
The STT engine is the foundation of a voice agent platform.

Its accuracy, latency, and streaming capabilities set the ceiling for your agent’s overall
performance and user experience. There are a few core dimensions to focus on for
STT in voice AI:

Concurrency,

Latency optimization,

Real-time processing and partials,

Accuracy & robustness,

Multilingual support,

Features.
03

Tactical checklist
Ensure that the vendor's API or SDK
supports streaming and concurrent
processing.

Design your internal workflow to avoid any
single-threaded bottlenecks. Break the
problem into pieces that can overlap.

Embrace asynchronous thinking: use async
I/O and handle events (“user finished
speaking” or “LLM produced first token”) to
trigger next actions.

Concurrency
To minimize latency, make sure your STT, LLM, and TTS components (and any
intermediate logic) can all run in parallel and that your orchestration properly
coordinates those parallel tasks.

Achieving this requires careful software engineering (threading, async I/O,
message queues, etc.) and often a microservices architecture where STT,
LLM, and TTS components operate independently and communicate through
streaming APIs or websockets.  

Concurrent STT also means managing throughput carefully: inquire about
provider rate limits on concurrent websocket streams and requests per
second to avoid throttling or dropped sessions.   

Design your orchestration to batch, queue, or shed load when you’re close to
those limits, and to prioritize active conversations over background jobs. Align
these patterns with your STT provider’s documented concurrency quotas and
upgrade paths as traffic scales.

1 2 3 4 5 6

1404

Latency
In voice AI, latency is defined as the time from the end of the user’s
utterance to the start of the agent’s response. It’s the sum of all the
processing delays in the pipeline. To make a voice agent feel truly real-time, a
common benchmark is to get that round-trip latency under 500 ms or better.
For that, you need to optimize above all STT latency.

You should always measure time-to-first-byte/token (TTFB, a.k.a. TTFT).
TTFB is how long it takes from input to the first partial output. An STT that
begins showing text in 200 ms versus one that takes 800 ms makes a big
difference in perceived responsiveness.

Infrastructure: If you self-host, beware of cold starts. Spinning up a GPU on-
demand can take many seconds, which is unacceptable in a live call. Keep
models “warm” or use autoscaling.

1 2 3 4 5 6

Tactical checklist
Enable and act on partial transcripts: see
the next page for more details.

Optimize each hop. If you’re calling third-
party APIs (e.g., to get account info), cache
or pre-fetch frequently needed data.

Measure in realistic scenarios. On actual
audio from calls, incl. network transmission
time to/from the STT service.

Use logs to capture timestamps at each
stage and identify bottlenecks.

05

Tactical checklist
Look at both the latency of partials and the
quality (are the partials reasonably
accurate, or so unstable that they’re
useless?)

Use confidence thresholds. Only forward
partials that exceed a chosen certainty
score: typically 0.7-0.8.

Experiment with “speculative” responses.
Start formulating an answer before the user
finishes; be ready to discard/adjust if intent
changes.

Partial results
Achieving true real-time transcription means your STT should start producing
text within a few hundred milliseconds of the user speaking and keep updating
as more speech comes in. In practice, this is done via partial transcripts:
interim results that update word-by-word (or even character-by-character)
before the final transcript is confirmed.

Used well, partial transcripts drastically reduce perceived latency and make
the agent seem natural and attentive. Initial partial results often arrive within
100–200 ms of speech onset – essentially in real time. Those early words can
be used to start database lookups or feed an LLM so that by the time the user
finishes a sentence, the agent is already halfway done thinking of the answer.

Studies have found that users begin forming an impression of system
responsiveness within about 300 ms of finishing their turn, so hitting that
sub-300ms “time to first word” threshold is a good target.

1 2 3 4 5 6

1406

What makes Gladia
stand out?

Gladia’s real-time STT delivers initial partials in (up
to 2x faster than the leading alternative) and a time-to-first-
word in , and streams on the fly. That level of
performance enables voice agents to start “thinking” almost
as soon as the user begins speaking, with limitless parallel
streams to support your growth.

~100 ms

<300 ms

“Yes, I need to schedule an appointment for a service call”

Yes I need to an appointment for a service call

< 100ms < 100ms < 100ms 300ms 300ms

VERY FAST FAST

07

Tactical checklist
Use recordings from your own users/
environment. Don’t just rely on a provider’s
quoted WER on standard datasets.

Evaluate STT accuracy on your target
languages, accents, and jargon, ideally
using real sample audio

Test whether key domain terms relevant for
your use case (e.g. phones, emails) are
recognized accurately and consistently.

Accuracy
Accuracy is the other side of the STT coin. Speed means nothing if the
transcribed words are wrong. Transcription errors can directly lead to AI
errors – the LLM might completely misunderstand the user’s request if a key
word is misheard.

When we talk about STT accuracy, it’s more than just overall Word Error Rate
(WER). Domain-specific accuracy matters a lot. This includes accents or
dialects, industry jargon or product names, and background noise conditions
(VoIP noise, street noise, etc.). Many general models are trained on clean,
scripted English (e.g. audiobooks), and their accuracy can drop sharply with
heavy accents, cross-talk, or niche vocabulary.

Another aspect to be mindful of is robustness to disfluencies (ums, ahs,
repetitions). Some STT engines have options to exclude filler words. For a
voice agent, you want to ignore the “ums” but catch self-corrections (e.g. “I
need a ticket to Boston – I mean to Austin”).

1 2 3 4 5 6

1408

Tactical checklist
Decide early whether multilingual
capabilities matter for your use case. If yes,
make sure your architecture supports it.

Ensure either your chosen LLM is
multilingual or plan for a translation layer or
multi-model setup.

Evaluate STT in all target languages/
dialects. Don’t assume “supports X
language” equals “good at X language.”

Test it.

Multilingual support
If your voice agent will serve users in multiple languages (or even just
languages other than English), you need to bake in multilingual support at the
core of your stack. This means both the STT and the LLM (and possibly the
TTS) must handle different languages – ideally within the same conversation
(code-switching).

Beyond just language, consider cultural context. The LLM might need different
prompt tuning for different languages to maintain the same persona or
politeness level. For example, how a support agent speaks in Japanese (very
politely) versus in American English (more informal) will differ. If using one LLM
for both, you might adjust the system prompt based on language context (“In
Japanese, be very polite and use -masu/-desu form.” etc.)

1 2 3 4 5 6

1409

What makes Gladia stand out?

Gladia offers the broadest and most
accurate language support of any STT
provider on the market—powering real-
time transcription, code-switching, and
translation across 100 languages.
Whether you're enabling a global
workforce or supporting multilingual
customers, Gladia makes it possible to
serve users fluently, no matter where
they are.

True global language support

Gladia supports 100 languages, including 42
underserved languages that aren’t available
from other leading STT providers—covering
high-population markets like Bangladesh, India,
and the Philippines.

Fine-tuning by language(s)

For even greater performance, developers
can pre-set one or multiple expected
languages in a call or conversation, reducing
misclassification and speeding up
transcription—ideal for contact centers and
multilingual products.

Robust code-switching capabilities

Gladia can handle real-time language mixing
within a single conversation—essential for
any real-time voice product built for the
chaos of multilingual conversations.

Accuracy across dialects & accents

Unlike models that falter outside of English or
clean audio, Gladia was trained and
evaluated to perform reliably across regional
variations and accent-heavy speech.

10

Tactical checklist
Tune VAD + endpointing: Benchmark VAD
and endpointing across real calls to
minimize hallucinations while avoiding
premature cutoffs on long pauses.

Configure NER or keyword spotting to tag
entities that trigger routing, alerts, or
downstream workflows in your stack.

Integrate real-time sentiment or emotion
scores into orchestration to dynamically
adjust dialog paths, escalation rules, and
incentives.

Maintain and regularly update your custom
vocabulary; track errors to decide when
deeper fine-tuning is justified.

Features
Modern STT platforms often come with a suite of additional features beyond plain
transcription. When comparing options, look at:

Voice activity detection (VAD)

VAD detects when a user starts and stops
speaking, while endpointing defines how
many seconds of silence are required
before the STT closes an utterance.

Named entity recognition (NER)

Keyword spotting features identify and
categorize specific information—like
names, locations, organizations, dates,
emails, and phone numbers.

Real-time audio insights

Some platforms can do things like emotion
or sentiment detection from the voice, or
detect keywords that were spoken
(independent of the transcript).

Custom vocabulary

The ability to teach the model new words
(e.g. product names, industry-specific
terms) can be critical for achieving high
accuracy in niche domains.

1 2 3 4 5 6

11

What makes Gladia
stand out?

Gladia’s next‑gen STT model doesn’t just transcribe—it powers voice
agents with advanced real-time audio intelligence features and
native integrations with voice AI toolkits and frameworks. We enable
teams to ship richer voice experiences without stitching together
multiple vendors.

Voice Activity Detection (VAD) control
Gladia’s speech_threshold (0–1) fine-tunes noise filtering. A 0.999 setting
keeps only direct mic input—ideal for noisy call centers. Lower values
allow more ambient speech. VAD control adapts to your environment.

Stress-tested across diverse datasets
We benchmark on datasets like Mozilla Common Voice & Google FLEURS
for accent and audio diversity. Unlike vendors tied to one benchmark, we
test across versions—including real-world data—for true robustness.

Adaptability to specific use cases
While you get high accuracy out of the box, you can easily fine-tune
Gladia to your terminology, audio environments & user speech patterns.
This is especially useful for improving recognition of repeated or unique
phrases, without the overhead of building custom models from scratch.

Named Entity Extraction (NER)
We go beyond transcription by extracting structured data like names, orgs,
and locations. Powered by proprietary ASR systems, this enables fast,
accurate capture for CRMs, automation, and insights from any audio.

Integrates natively with

12

Lessons from the field: THOUGHTLY

Building production-grade
AI voice agents

Thoughtly, a US-based startup, is pioneering enterprise-grade voice

agents across phone, SMS, and more. Some lessons from their

journey:

Evals and benchmarking were crucial. They built internal eval

tools to test each STT/LLM/TTS combination using real call replays

and clear metrics. This let them compare vendors objectively and

improve the stack based on data, not hype.

Latency was a top priority from day one. Thoughtly knew that

even a one-second delay breaks a conversation, and optimized

every stage of the pipeline, using techniques like speculative

generation and vendor race conditions to cut milliseconds

wherever possible.

They emphasized that the rise of third-party evaluation tools, like

Coval for voice AI, signals a more mature ecosystem. Takeaway: build

a solid evaluation layer for your voice agents – combine offline

benchmarks with live metrics like containment rate.

On scaling, Thoughtly recommends relying on regional

infrastructure to reduce latency, aggressive caching, and

lightweight websocket streaming. They also learned that over-

provisioning hides latency problems but drives costs up.

For compliance (HIPAA, SOC2), they noted that chaining too

many third-party services makes audits significantly more

complex. Their advice: keep the vendor stack as lean as

possible.

13

Their build-vs-buy insight

AI models improve so quickly that self-hosting rarely
provides a long-term edge. Maintaining GPU
infrastructure and model updates becomes a distraction.
Focus effort on your own value layer – the workflow, the
orchestration, and the UX – and let specialized APIs do
the heavy lifting.

The hidden downsides
of self-hosting

“This time last year, a speech-to-text API typically took
400–700 ms to respond. A self-hosted model may have
been needed then in order to hit <1 minute latency. Now
benchmarks are at 50–150 ms. At that point, the benefit of
self-hosting disappears — especially when you factor in
infra cost, server hops, and cold-start delays.

There’s no standard eval in voice AI (yet). Every company
has to build its own. All the more important to build a
robust, reproducible, and reliable evaluation layer. There
are a lot of vendors in the market, and they’re not all
created equal. Having great evals and benchmarking saves
you from wasting months chasing the wrong tool.”

Alex Castella

Co-founder & CTO

14

Large Language Model (LLM)
If STT is the ears of the voice agent, the LLM is the brain.

This is the component that actually “understands” the transcribed text and decides

how to respond. A voice agent’s conversational intelligence – how helpful, coherent,

and on-brand it is – hinges on the LLM’s capabilities.

In practice, these needs mean evaluating the following LLM qualities:

Latency and streaming quality,

Dialogue memory and interactivity,

Output control, style, and error handling,

Practical fit, integration, and cost.

15

Tactical checklist
Ensure low time-to-first-token and
smooth streaming for natural-sounding
voice playback.

Choose LLMs with multi-turn memory
and pause/resume behavior for real-
time interactivity.

Prompt or fine-tune for brevity, friendly
tone, and hallucination resistance
under pressure.

Evaluate tool-use support and match
model cost/performance to expected
traffic patterns.

LLM vendor considerations
Latency and streaming quality

Voice agents depend on immediacy. The best
LLMs return their first token (TTFT) in <400 ms
and stream outputs at a smooth, conversational
pace. Consistent token pacing helps downstream
TTS systems generate fluid, natural-sounding
speech. Avoid models that produce output in
unpredictable bursts or long pauses as it disrupts
turn-taking and erodes realism.

Output control, style & error handling

A strong voice LLM maintains context over multiple
turns, e.g. tracking references like “that change” or
“the second one.” Look for a model with a large
context window and good long-range memory
use. Additionally, voice agents must support mid-
sentence interruptions and recovery. Some models
handle this smoothly; others require orchestration
to restart generation.

Dialogue memory & interactivity

LLMs should produce brief, on-brand, and friendly
responses. Some default to verbose or robotic
styles; mitigate this with careful prompting or
prompt templates. Avoid hallucinations with
grounding: RAG, system prompts, or external fact
injection. Also, ensure graceful error handling:
LLMs should say “I don’t know” instead of
guessing.

Practical fit, integration & cost

Evaluate if the model supports external tool use
(e.g., APIs, function calls), RAG integration, and
fallback behavior. Balance performance with cost:
consider using high-quality models for complex
queries and faster, cheaper ones for routine
interactions. Hosting your own model may reduce
variable costs but introduces engineering and
infrastructure tradeoffs.

16

Text-to-speech (TTS)
The text-to-speech layer is the voice of your agent.

And in many ways, TTS is the unsung hero of voice agents – a user will often judge the
agent’s quality by how natural and pleasant the voice sounds, regardless of the
intelligence behind it.

Some of the key TTS considerations are:

Real-time streaming and natural turn-taking,

Voice quality and persona adaptability,

Accuracy and dynamic handling on key domain entities, barge-in and interruptibility,

Scalability and cost,

Multilingual & advanced feature support.
17

TTS vendor considerations
Real-time for natural turn-taking

Modern TTS should generate speech at the word or
phoneme level. This allows playback to begin
milliseconds after the LLM starts producing output.
Ideally, users never notice a delay between
speaking and hearing the system reply: this real-
time overlap is essential for natural turn-taking.

Voice quality and persona alignment

Speed alone isn’t enough. The selected voice must
reflect the brand's personality—whether friendly,
calm, formal, or energetic. High-quality TTS also
manages prosody effectively: rhythm, intonation,
and stress patterns ensure the voice sounds
engaging, not flat or robotic.

Handling unpredictable content

Voice agents must pronounce names, numbers,
dates, addresses, and domain-specific phrases on
the fly. A production-ready TTS engine needs
robust text normalization and support for custom
pronunciations, acronyms, and alphanumeric
sequences.

Barge-in and interruption handling

Spoken conversations are interactive. TTS systems
must support barge-in – stopping speech instantly
when the user interrupts, to avoid frustrating
overlap. This feature keeps exchanges fluid and
helps the agent feel more attentive and
conversational.

Multilingual support

If your use case requires it, ensure the TTS
supports multiple languages or can seamlessly
switch voices when the language changes.

Infrastructure and scaling

Cloud-hosted TTS often handles concurrency well,
but if you're self-hosting or anticipating heavy load,
assess cold starts, throughput, and cost.

Tactical checklist
If using multiple voices/languages,
choose ones that match tones and
support expressive prosody.

Ensure your TTS provider offers
support for custom pronunciations,
numbers, and multilingual input

Test extensively vendors’ barge-in
capabilities (on real audio!) for clean,
interruption-ready conversations.

Always evaluate scaling, load behavior,
and estimated cost under real-time
usage conditions.

18

A voice agent isn’t just a sum of STT+LLM+TTS.

It’s the cohesive experience of a helpful, fast, and trustworthy conversation. Achieving
that means optimizing each layer, but also continually testing the end-to-end
experience as users will see (or hear) it.

Gladia’s approach – and what we’ve tried to convey in this guide – is to use best-in-
class technologies for each layer and fine-tune how they interact.

By leveraging Gladia’s real-time STT, pairing it with an appropriate LLM strategy
through a robust orchestration, and delivering responses via high-quality TTS, you can
build a voice agent that feels cutting-edge and reliable without reinventing the wheel
at every layer.

Final thoughts

The speech-to-text
backbone for voice platforms

Everything starts with reliable transcription.

Learn more at gladia.io.

Talk to an expert

Trusted by 500+ AI agents and contact center platforms

https://www.gladia.io/
https://www.gladia.io/demo-request

