
The Ultimate

Guide to Using

LLMs with Speech
Recognition to

Build Voice Apps

Index

Executive summary

The new era of LLM-powered apps is here

Part 1: Large Language Models (LLMs)

Market overview

Types of LLMs and what they're good for

Open-source vs. proprietary LLMs for voice apps

Key LLM benchmarks and their limitations

Key challenges of LLMs and how to mitigate them

�� Hallucinations

�� Limited context windows

�� Predominantly English-language training data

How to improve LLM's performance: techniques and best practices

�� Prompt engineering

�� Fine-tuning

�� Retrieval-augmented generation (RAG)

�� Function calling

Part 2: Speech to Text

A brief introduction to ASR systems

Open Source vs. API for voice apps

�� Building in-house with an open-source model

�� Opting for Big Tech or specialized provider

Key factors to consider when picking a STT provider

�� Latency

�� Features

�� Accuracy

�� Language support

�� Security and regulatory compliance

�� Hosting in the cloud, on-premise, or air gap

4

5

7

7

11

16

21

23

23

24

26

27

27

29

30

33

37

38

40

40

42

44

45

46

49

50

52

52

2Index

Checklist: Planning and evaluating STT and LLMs for your voice app

Part 3: 5 best practices for using STT and LLMs for voice apps

Practice #1: Use LLMs to improve STT output and diarization

Practice #2: Divide and conquer with a multi-model approach

Practice #3: Don't resort to fine-tuning too early

Practice #4: Be mindful of context window size

Practice #5: Don’t forget context windows' language bias

Conclusion

About Gladia

56

59

59

60

61

62

63

65

66

3Index

4Executive summary

Large Language Models (LLMs) Speech to Text (STT)and have much to offer to

product builders, but making full use of them — both individually and in tandem — is

not as simple as it may seem.

This guide results from our work with hundreds of audio-first companies, including

AI-powered meeting note-takers and contact centers as well as extensive

interviews with some of our customers such as Circleback and Spoke.

We took into account key considerations when building voice-powered platforms to

provide you with a comprehensive overview of the state-of-the-art LLMs and STT

models, and how to leverage them together to build advanced AI features for

your voice app.

The guide is jam-packed with insights and hands-on advice so you can confidently

start implementing these cutting-edge capabilities today.

If you're a CTO, CPO, engineer, or developer looking to harness the full potential of

STT and LLMs, you’re in the right place.

Executive summary

5The new era of LLM-powered apps is here

Previously reserved for organizations with extensive resources and experts with

deep technical knowledge, the introduction of the first

 in 2018 by OpenAI has taken the world by storm.

The widespread adoption of LLMs has lowered entry barriers in terms of resources

and AI expertise and opened the door for businesses to build advanced AI-driven

products and services.

 generative-pretrained

transformer (GPT)

Today, voice-first businesses like note-taking assistants and contact centers are

increasingly combining STT models with LLMs to embed new AI features for a

range of use cases: from generating meeting summaries in the blink of an eye, to

assisting call center agents with real-time guidance.

It’s clear LLMs and STT models have a lot to offer, but making full use of them is

not as simple as it may seem.

Should you leverage open-source models or access them via an API? Is it cost-

effective to use proprietary models or will an open-source model do for the task at

hand? What are the different techniques you can employ to overcome common

issues like hallucinations?

The new era of LLM-powered
apps is here

It's estimated that there will be

, and companies are facing pressure to

integrate AI-powered features into their products to remain

competitive and retain users.

over 750 million apps using

LLMs by 2025

https://springsapps.com/knowledge/large-language-model-statistics-and-numbers-2024

6The new era of LLM-powered apps is here

This guide will equip you with the knowledge to make an informed decision that

is aligned with your user needs, budget, and tech stack. It’s divided into three

chapters that cover the most essential concepts about LLMs, STT models, and

how to make the best use of these complementary technologies to build

competitive products.

Let’s start with LLMs.

7Part 1: Large Language Models (LLMs)

Large Language Models
(LLMs)

Market overview

LLMs have come a long way: from simple rule-based systems to complex

intelligence models that excel in natural language processing (NLP) tasks such as

text generation, automatic translation, sentiment analysis, and document

summarization.

There are hundreds of models currently available on the market. Listing them all

would be nearly impossible, and the list would probably soon be outdated because

of how quickly they are being developed and released.

Based on our internal customer survey, here are some of the most popular LLMs

used by voice platforms today.

Issued by Model example Known for Use cases Pricing

OpenAI GPT models such as

ChatGPT and

InstructGPT.

Powerful text

generation.

Chatbots, content

creation, and code

generation.

Multiple models with

different price points.

The global LLM market is projected to grow

. During the

2023-2030 period, the CAGR is predicted to be at 79.80%.

from $1.590

million in 2023 to $259.8 million in 2030

Part 1

https://www.grandviewresearch.com/industry-analysis/large-language-model-llm-market-report

8Part 1: Large Language Models (LLMs)

Issued by Model example Known for Use cases Pricing

Meta AI LLaMa family LLaMa 2 has been

praised for its

efficiency and ease of

deployment on

consumer-grade

hardware.

Widely used in

research and

commercial

applications, including

chatbots and content

creation.

The quota applies to

each region where the

models are available.

The quota is specified

in queries per minute

(QPM).

Google PaLM Released in 2022,

PaLM leverages a

Mixture of Experts

(MoE) architecture to

train models with up to

540 billion

parameters.

Excels in various NLP

tasks, including

translation,

summarization, and

question answering.

It can be used for free.

Google Gemini Designed to handle

more complex tasks

with improved

contextual

understanding and

generative

capabilities.

Complex tasks like

coding and creative

writing.

Free tier and flexible

pricing as you scale.

OpenAI GPT models such as

ChatGPT and

InstructGPT.

Powerful text

generation.

Chatbots, content

creation, and code

generation.

Multiple models with

different price points.

Anthropic Claude Extensive safety

measures and fine-

tuning to avoid

generating harmful or

biased content.

Sensitive data

handling, educational

tools, and healthcare

support.

Free access with pro

subscription starting

at $20 per month.

Mistral Ministral 8B Powerful edge model

with extremely high

performance/price

ratio.

Privacy-first inference

for applications such

as on-device

translation, internet-

less smart assistants,

and autonomous

robotics.

Two types of models:

free and premier.

9Part 1: Large Language Models (LLMs)

Issued by Model example Known for Use cases Pricing

NVIDIA and Mistral AI

Mistral-NeMo-

Minitron 8B

A miniaturized version

of the recently

released Mistral

NeMo 12B model,

delivering high

accuracy combined

with the compute

efficiency to run the

model across GPU-

accelerated data

centers, clouds, and

workstations.

Chatbots, virtual

assistants, and

content generation.

Open-access model

available on Hugging

Face.

Technology

Innovation

Institute in Abu

Dhabi

Falcon Released under the

Apache 2.0 license,

the Falcon Mamba 7B,

Falcon 2, 180B, 40B,

7.5B, and 1.3B

parameter AI models

form a suite of

offerings.

Some of the use

cases include text

classification and

generation, sentiment

analysis, and question

answering.

Can vary depending

on the specific model

(e.g., Falcon 7B,

Falcon 40B) and

whether you are using

it via cloud-based

services or self-

hosting.

Databricks Databricks’ Dolly 2.0 Databricks’ Dolly is an

instruction-following

large language model

trained on the

Databricks machine-

learning platform.

Text classification,

closed QA,

generation,

information extraction,

open QA, and

summarization.

It’s an open-source

model that you

download, use, and

modify.

Stability AI StableLM The open-source

StableLM family

focuses on general

NLP tasks.

Use cases include

text generation,

conversational AI

applications,

translation, and more.

StableLM models are

primarily open-source

and freely available for

anyone to download,

use, and modify.

However, there are

still costs involved

with deploying and

running them.

Microsoft Phi open models A family of powerful,

small language

models with

groundbreaking

performance at low

operation cost and

low latency.

Potential use cases

include real-time

captioning for audio

and video, on-device

sentiment analysis,

real-time language

translation, and more.

Available for free for

real-time deployment

through the Azure AI

model catalog,

Hugging Face, and

Ollama. Also available

with pay-as-you-go

billing via inference

APIs.

10Part 1: Large Language Models (LLMs)

Issued by Model example Known for Use cases Pricing

Alibaba Group Qwen The powerful base

models in the Qwen

series are pre-trained

on massive

multilingual and

multimodal datasets.

High-quality text

creation and

processing, coding

assistance, and

multilingual

translation.

The pricing depends

on the model. The

fees are calculated

based on the number

of API calls.

Google Gemma open models Gemma is a family of

lightweight, state-of-

the-art open models

built from the same

research and

technology used to

create the Gemini

models.

CodeGemma and

PaliGemma have their

own specific use

cases. But in general,

Gemma can be used

for tasks, such as

building

conversational AI

assistants and

chatbots, text

generation, text

summarization, and

more.

The Gemma models'

terms of use make

them freely available

for individual

developers,

researchers, and

commercial users for

access and

redistribution.

11Part 1: Large Language Models (LLMs)

LLMs owe their exceptional performance to the architecture, which

fundamentally shapes how these models learn from training data.

Introduced in 2017, the Transformer enabled revolutionary mechanisms like

positional encodings, attention mechanisms, and, most notably, self-attention.

This mechanism is what gives LLMs their edge, allowing them to

produce coherent, context-aware outputs across diverse business cases.

By understanding relationships within data—be it text, customer behavior patterns,

or online meeting transcripts—businesses can unlock automation, deliver

personalized experiences, and extract actionable insights from audio and

beyond.

Depending on the architecture, LLMs can be categorized by

 and .

Each architecture has its unique strengths that can be further improved by

techniques such as fine-tuning and prompt engineering, explained later in this

chapter.

Transformer

self-attention

decoder-only model,

encoder-only, encoder-decoder-models, mixture of expert (MoE) models

Types of LLMs and what they’re good for

�� Decoder-only models

Models such as series or , use decoder-only

architecture to generate the next part of the input sequence based on the previous

context.

 OpenAI’s GPT Meta’s LLaMA

Good for

They can’t comprehend the entire input but excel at generating the next probable

word, which makes them effective for text-generation tasks like creative writing

and dialogue generation.

GPT Decoder

Nx The decoder

OUTPUTS

Output embedding

Masked multi-head attention

Multi-head attention

Add & norm

Feed forward

Add & norm

Linear

Softmax

OUTPUT PROBABILITIES

Add & norm

Positional Encoding

Shifted right

12Part 1: Large Language Models (LLMs)

NxThe decoder

INPUTS

Input embedding

Multi-head attention

Add & norm

Feed forward

Add & norm

Positional Encoding

13Part 1: Large Language Models (LLMs)

�� Encoder-only models

Models like leverage encoder-only architecture to turn input into

contextualized representations without directly generating new sequences.

Unlike previous models that processed language in a unidirectional manner, BERT

reads text bidirectionally, considering the context from both the left and right sides

simultaneously.

Google’s BERT

Good for

This bidirectional approach is crucial for tasks requiring a deep understanding of

context and semantics, including sentiment analysis, question answering, and

named entity recognition (NER).

14Part 1: Large Language Models (LLMs)

�� Encoder-decoder models

Models like and consist of both encoder-decoder

components. The encoder is responsible for processing the input sequence and

the decoder generates the output sequence.

Google’s T5 Meta’s BART

INPUT

Encoding Component

Encoder

Encoder

Encoder

Decoding Component

Decoder

Decoder

Decoder

OUTPUT

Good for

The dual-process architecture excels in tasks where understanding the entire

input before generating output is crucial. These include translation, text

summarization, and classification.

15Part 1: Large Language Models (LLMs)

�� Mixture of expert (MoE) models

Models like and introduce a more

modular and specialized framework for building LLMs that can dramatically

increase the model size while maintaining computational efficiency. By dividing the

model into multiple "expert" sub-networks, each of which specializes in handling

different types of inputs or tasks, each model, or 'expert’ undergoes a specialized

training process. Over time, the gating network improves understanding of each

model's strengths and fine-tunes its routing decisions accordingly.

Mistral’s 8x7B Google’s Switch Transformer

INPUT

OUTPUT

Gating network generates the weight

Gating Network

Expert 1 Expert 2 Expert 3 Expert n-1 Expert n

Good for

The MoE approach has led to notable advancements in fields such as text

generation, multilingual understanding, and domain-specific tasks. For example,

some experts might specialize in grammar and syntax, while others focus on

specific domains like medical or legal language.

Open-source vs. proprietary LLMs for voice apps

Choosing the right model for your voice app goes beyond architecture—you’ll also

need to decide between open-source and proprietary LLMs. Key considerations

include tradeoffs between flexibility, security, and cost.

Let’s break down the pros and cons of each.

16Part 1: Large Language Models (LLMs)

Open-source LLMs

Open-source models, typically created by developers and researchers,

are available for anyone to use, modify, and distribute.

Flexibility

The main advantages of open-source models include transparency and flexibility;

you can optimize them for more efficient performance and customize them

depending on your specific needs.

Notable examples include: �

�� – excels at creative text generation and problem-solving. �

�� – a highly effective coding assistant. �

�� – optimized for tasks like language translation. �

�� – offers versatile models available as pre-trained weights, designed

for flexibility and adaptability across a range of applications, from text

understanding to generative tasks.

Falcon LLM

StarCoder (from Hugging Face)

LLaMA

MistralAI

Cost

Unlike proprietary models, open-source LLMs don’t charge licensing fees, making

them attractive to smaller organizations with tight budgets.

17Part 1: Large Language Models (LLMs)

Security

Open-source LLMs allow for greater control over data and model behavior. You

can deploy them on-premise or within a private cloud environment and prevent

sensitive user data from being stored and potentially breached on a third-party

server.

However, they come with hidden costs, such as infrastructure and setup, often

requiring in-house expertise.

For example, while Mistral’s models are free to use, hosting and fine-tuning on

cloud platforms can cost $0.05–$0.15 per 1,000 tokens, depending on the

provider and setup.

Similarly, Meta’s LLaMA models are open-source, but deploying them for

commercial use involves significant cloud infrastructure expenses, especially for

fine-tuning and scaling on platforms like AWS or Google Cloud.

Proprietary LLMs

Proprietary models, developed by private organizations, are usually

offered via APIs, commercial licenses, or subscriptions. Their access is

restricted, with the underlying code and data kept private.

Companies like OpenAI, Microsoft, and AWS offer proprietary LLMs as a

service. They provide public APIs to models such as OpenAI’s GPT-4 or

those hosted on Microsoft Azure, allowing for easy deployment and

access.

Flexibility

Proprietary LLMs come with notable constraints compared to open-source

options. Direct access to model weights or extensive fine-tuning is often off-limits,

with customization usually limited to prompt engineering or API-specific tweaks.

While this can feel restrictive, it simplifies deployment and reduces operational

complexity—a tradeoff many businesses are willing to make.

18Part 1: Large Language Models (LLMs)

That said, these models shine in specialization. Whether fine-tuned for customer

service, coding, or creative writing, proprietary LLMs are purpose-built for

precision in specific use cases. This focus can deliver exceptional performance

but may limit versatility outside their domain.

Cost

Pricing typically follows a pay-as-you-go model calculated by token usage. Costs

can escalate quickly with high-volume applications, but many providers offer free

credits for trial runs—ideal if you’re a startup looking to test the waters.

For enterprise users, discounts and custom pricing can make scaling more cost-

effective, ensuring your ROI aligns with usage.

As of the time of writing, these are the prices for some popular proprietary models.

Provider Model/version Pricing estimate

Cohere Command R $0.01–$0.04 per 1,000 tokens

Azure OpenAI GPT-3.5, GPT-4 $0.03–$0.06 per 1,000 tokens

Anthropic Claude 2, Claude 3 $0.03–$0.10 per 1,000 tokens

OpenAI GPT-3.5, GPT-4 $0.002–$0.12 per 1,000 tokens

Google Gemini 1, Gemini 1.5 $0.03–$0.12 per 1,000 tokens

Good to know:

�� OpenAI: pricing depends on token usage and varies by model version, with fine-tuning costs determined by

base model and usage�

�� Anthropic: pricing is often not publicly listed, and estimates may vary�

�� Google Gemini: pricing is mostly enterprise-focused and based on usage and capacity for models available

on Google Cloud�

�� OpenAI Azure: pricing varies by region, so it’s essential to calculate expenses specific to your location.

19Part 1: Large Language Models (LLMs)

Security

Proprietary LLMs can offer enhanced security in areas like access control, data
privacy, and regulatory compliance. However, they are not immune to risks,
including insider threats and transparency issues.

The security of a proprietary LLM depends on how it is developed, deployed, and
maintained. These models are often designed with strict data privacy measures,
particularly for companies adhering to regulations like GDPR and HIPAA. Strong
access control features, such as user authentication and rate-limiting, are also
common.

Below we compare the pros and cons of open-source versus proprietary models
to help you make an informed decision.

Criteria Open-sources models Proprietary models

􀖘 Budget constraints Generally free, making them ideal for

projects with limited budgets.

Can be expensive, particularly for small

businesses or individual developers.

􀌆 Customization Offer the flexibility to modify and adapt

models.

Limited scope for customization.

􀇿 Hallucinations Can generate inconsistent or incorrect

data.

Can generate inconsistent or incorrect

data, but the commercial providers

usually perform optimizations to improve

these issues.

􀞚 Security Risks include potential exposure of

classified information or misuse.

More secure use of sensitive data and

regularly updated to address

vulnerabilities.

􀉚 Resources Implementing and maintaining an open-

source LLM can be resource-intensive.

API access enables fast and affordable

implementation.

􀙅 In-house expertise Low accessibility means substantial

technical expertise is required.

High accessibility means little to no

technical expertise is required.

􀡦 Reliability and support Community-driven so often lacking

dedicated support.

Controlled and reliable environment with

dedicated support.

20Part 1: Large Language Models (LLMs)

Key takeaway

When choosing the right LLM for your project, it's important to consider your

needs, budget, tech stack, and in-house expertise. You don’t have to choose either

an open-source or a proprietary LLM; depending on your use case, a hybrid

approach may be most effective.

If you want lots of customization, open-source models may be better suited.

However, if you’re looking to prioritize security, reliability or dedicated support,

opting for a proprietary model is advisable.

Key LLM benchmarks and their limitations

For CTOs and engineering teams, benchmarks are critical for assessing an LLM’s

performance across tasks like coding, question-answering, common-sense

reasoning, language translation, and text summarization.

These benchmarks evaluate models by assigning predefined tasks, measuring

outcomes using specific metrics, and scoring results. These tasks typically include

coding challenges, math problems, and conversation samples.

However, benchmarks often rely on static datasets that may not reflect real-world

variability or evolving use cases, making it crucial to supplement them with

domain-specific testing.

Testing happens with three techniques, which we’ll explore in more detail later�

�� learns from a few examples�

�� tackles tasks without examples�

�� trained on similar data for better results.

The model’s output will then be compared to the expected answer and scored,

usually from 0 to 100.

Here are the common metrics used for benchmarking LLMs�

�� — Truthfulnes�

�� — Language understandin�

�� — Commonsense reasonin�

�� — Challenging reasoning task�

�� — Coding challenge�

�� — Programming task�

�� — Human-ranked ELO-based benchmark

Few-shot:

Zero-shot:

Fine-tuned:

TruthfulQA

MMLU

HellaSwag

BIG-Bench Hard

HumanEval

CodeXGLUE

Chatbot Arena

21Part 1: Large Language Models (LLMs)

Popular tools that compare different models and their performance for specific

tasks are known as LLM leaderboards.

An example is the Hugging Face Open LLM Leaderboard, an automated evaluation

system that evaluates models across six tasks including reasoning and general

knowledge. Other leaderboards that you can also use to evaluate a model include

MTEB and LLM-Perf leaderboards.

22Part 1: Large Language Models (LLMs)

Open LLM Leaderboard by Hugging Face

Benchmarks can help you identify the model’s strengths and weaknesses, helping

you through the process of optimizing a model's performance with techniques like

 or , which we discuss below.fine-tuning retrieval-augmented generation (RAG)

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/optimum/llm-perf-leaderboard

However, you need to take evaluations with a grain of salt. Benchmarks have

limitations. They don’t always do a good job predicting how a model will perform

in real-world situations and can sometimes lead to what is called ‘overfitting’ —

meaning they perform well on tests but fail during practical use.

Based on our experience and that of our customers, benchmarks do a poor job of

capturing how the average person interacts with the models being tested. Our

internal findings were aligned with other analyses, including Surge AI’s research

about HellaSwag, which concluded that

.

In addition, LLM benchmarks use diverse data and may not assess performance

well in specialized or unique cases that require tailored data.

36% of this popular benchmark contains

errors

23Part 1: Large Language Models (LLMs)

Key performance metrics for speech recognition providers, including speed and

accuracy, are covered later in a dedicated section.

Key challenges of LLMs and how to mitigate them

Despite their remarkable capabilities, LLMs come with their own set of challenges that

may negatively impact your product and user experience. Below are some you should

anticipate, and techniques you can use to overcome them.

Hallucinations

Hallucination usually occurs when the model lacks knowledge or doesn’t have

enough context on the topic. Although models can produce outputs tailored to a

request, they can only reference information that existed at the time of their

training, and that may not be up-to-date. The model will create coherent responses

by filling in gaps with information that sounds plausible but is incorrect.

The extent of hallucinations can vary from minor inaccuracies to entirely fictional

statements, often delivered with high confidence.

https://www.surgehq.ai/blog/hellaswag-or-hellabad-36-of-this-popular-llm-benchmark-contains-errors
https://www.surgehq.ai/blog/hellaswag-or-hellabad-36-of-this-popular-llm-benchmark-contains-errors

24Part 1: Large Language Models (LLMs)

There are several types of hallucinations in LLMs, such as�

�� Factual incorrectness: involves the misrepresentation of existing data, such as

providing the wrong medical reading, which can be harmful in critical fields like

healthcare�

�� Misinterpretation: occurs when the model either misunderstands the user’s

input or misclassifies information from its knowledge base�

�� Fabrications: the model generates entirely fictional content. These kinds of

hallucinations can have serious societal consequences, such as spreading

misinformation, creating legal risks, undermining public health, eroding trust in

AI systems, and amplifying biases.

There are different strategies that you can employ to address hallucinations in

LLMs, including training the model on a diverse, expansive dataset, balancing

prompts and data, and leveraging advanced techniques such as retrieval-

augmented generation (RAG).

For additional insights, refer to the “How to improve LLM’s performance: techniques

and best practices” section next.

Limited context windows

LLMs generate predictions based on the overall context, not just the preceding

word—this is enabled by the context window, a key factor in their power and

versatility.

A context window defines the amount of input text the model can process at

once. Larger windows allow the model to analyze more information, leading to

richer, more accurate responses.

However, most LLMs have limits on context window size due to RAM constraints.

For example, transcribing an hour of audio can produce around 25,000 tokens—

challenging for many models. This issue is amplified in low-resource languages,

where more tokens may be required to represent a single word.

Here’s a breakdown of context window limits for some leading LLMs at the time of

writing.

25Part 1: Large Language Models (LLMs)

Model Context window size Notes

GPT-3.5 4,096 Limited to a few thousand tokens and

suitable for shorter interactions.

LLaMa 2 4,096 Smaller context window, focusing on

efficiency.

Mistral 7B 32,800 Allows for detailed analysis and response

to large text sequences.

GPT-4o 128,000 Suitable for long-form content.

Claude 3 ~200,000 Large context window, ideal for long-form

documents

Mistral 7B 2,000,000 One of the largest context window sizes,

suitable for handling long-form

documents.

A key challenge with larger context windows is the or

 problem. Traditional LLMs often lose focus on crucial information in

the middle of a conversation, prioritizing the beginning and end instead. This

imbalance in attention leads to gaps in understanding and precision.

Another issue is , where models retain details from the

start and finish of a document but struggle to recall the middle content accurately.

These limitations can significantly impact performance in tasks requiring deep

comprehension of longer inputs.

"lost in the middle" “needle

in a haystack”

 "catastrophic forgetting”

There are different techniques to tackle these issues, including zero-shot and few-shot

prompting. More information on these techniques can be found in the next chapter.

26Part 1: Large Language Models (LLMs)

Predominantly English-language training data

The limitations of multilingual capabilities in LLMs pose significant challenges for

app developers and product leaders operating in a global market. Language

barriers can disrupt user experiences, leading to lost engagement or revenue

opportunities for your business.

Since the majority of LLMs are trained on English-language data, they often fail to

understand or generate nuanced responses in other languages. Low-resource

languages are particularly affected, experiencing higher rates of hallucinations

and inaccuracies due to insufficient representation in training data. This can lead

to misaligned user expectations and reduced trust in AI-driven features, especially

in markets where precise localization is critical.

While multilingual models like and offer improved cross-lingual

performance compared to English-dominant models, they still struggle with

capturing cultural context and linguistic subtleties, which can hinder seamless

global scalability for apps.

mBERT XLM-R

Key takeaway

If you’re a CPO or CTO building apps for diverse audiences, you should prioritize

integrating models that are fine-tuned for target languages or consider a hybrid

approach, such as combining LLMs with traditional localization frameworks�

�� Diverse multilingual datasets: Training LLMs on large, diverse datasets that

include underrepresented languages helps the model learn cross-lingual

representations. For example, models like mT5 (multilingual T5) excel in

multilingual tasks by leveraging such data�

�� Task-specific and cross-lingual fine-tuning: Fine-tuning on specific tasks

across multiple languages simultaneously enhances performance for both

high- and low-resource languages, improving the model's contextual

understanding and accuracy.

27Part 1: Large Language Models (LLMs)

How to improve LLM’s performance: techniques
and best practices

In this section, we’ll cover some key techniques and best practices you can apply to

improve the performance of an LLM, namely: prompt engineering (zero-shot, few-

shot chain-of-thought), fine-tuning, and retrieval-augmented generation (RAG).

Prompt engineering

Prompts are the input that guides an LLM's output and task execution. Different

types of prompts—zero-shot, few-shot, and chain-of-thought (CoT)—allow for

tailored model behavior and influence output quality based on task complexity.

Zero-shot prompting

Zero-shot prompts rely on the model's pre-trained knowledge without providing

specific examples. This approach works well for straightforward tasks, for

example:

Prompt

Complete the sentence by filling in the [mask]:

Sentence: The weather today is [mask].

Output

Sunny

Few-shot prompting

Few-shot prompts include one or more examples to guide the model, improving

performance for complex tasks. When a single example is used, it's called one-

shot prompting, for example:

Prompt

I love this product! // Positive

The service was terrible! // Negative

What an amazing experience! // Positive

That restaurant was awful! //

Output

Negative

28Part 1: Large Language Models (LLMs)

Chain-of-thought (CoT)

CoT prompts guide the model to break tasks into intermediate reasoning steps,

enhancing performance in problem-solving and multi-step calculations. While

most effective with few-shot prompts, zero-shot CoT can also be applied to

encourage step-by-step reasoning, for example:

Prompt (with CoT)

A farmer has a total of 80 apples. He wants to

divide them into baskets such that each basket

has an equal number of apples. If he places 12

apples in each basket, he will have 4 apples

left over. How many baskets can he fill? Let's

think step by step.

Output

First, we know the farmer has 80 apples in

total. If he puts 12 apples in each basket and

has 4 apples left over, we can subtract the

leftover apples from the total:

80 apples - 4 apples = 76 apples.
 

Now, we divide the remaining apples by the

number of apples per basket: 

76 apples / 12 apples per basket = 6 baskets

(with a remainder). So, the farmer can fill 6

baskets completely with 12 apples each.

Good to know

Whatever the technique, remember to match the size of the prompt to the data

provided. For example, pairing a one-sentence data input with a 50-sentence

prompt can cause the model to overemphasize the prompt structure instead of the

data content. Ensuring this proportionality is key to avoiding hallucinations.

Fine-tuning lets you take a pre-trained model and tailor it to your specific needs.

Instead of building a model from scratch using pre-training, you start with a model

already skilled in general language understanding and refine it with task-specific

data.

During fine-tuning, the model's architecture remains unchanged, but its internal

weights are adjusted to better fit the new dataset or domain. For instance:

�� Medical applications: Models like are fine-tuned with medical data,

including research papers and health queries, enabling them to handle

specialized tasks in healthcare�

�� Programming: is optimized for coding, offering powerful features

like autocompletion, debugging, and multi-language code translation�

�� Speech recognition: Fine-tuned models enhance automatic speech

recognition (ASR) systems like , helping them tackle domain-specific

terminology and complex language structures in fields like healthcare or low-

resource languages.

Med-PaLM

Code LLaMA

Whisper

Fine-tuning

Large corpus of data Task-specific dataset

LLM Fine-tuning the model Final Model

Ready to be used in real-word

applications

29Part 1: Large Language Models (LLMs)

Retrieval-augmented generation (RAG)

RAG enhances LLM accuracy by integrating real-time retrieval of external data

into the prompt. By accessing up-to-date information from sources like customer

documentation, web pages, or third-party applications, RAG enables LLMs to

deliver highly accurate, context-aware responses.

This approach ensures that your model remains relevant and reliable, no matter

how dynamic or specialized your queries are.

Here is how the retrieval process works:

User prompt: The user gives a specific query and triggers LLMs to create a

response. RAG converts the query into vectorized representations called

. Each element in an embedding corresponds to a specific

property within the query’s text that the model can understand.

Semantic search: RAG then performs a similarity search using AI

algorithms to match the query embeddings with the embeddings in a

 that contains external knowledge. Vector databases store

these embeddings in chunks. Each chunk contains a segment of data

corresponding to a particular domain. Algorithms will compute similarity

metrics to determine which chunk is closest to the query embeddings to

understand the relevant context. Relevant embeddings will be fetched to

provide the LLM with the correct context associated with the user’s query.

Prompt: LLM uses the context information retrieved from the vector

database and the user’s query as input. It combines this with the configured

prompt, which provides the LLM with the necessary instructions on how to

generate a response.

Post-processing: LLM processes the input according to the prompt and

provides a response.

embeddings

vector database

1

2

3

4

30Part 1: Large Language Models (LLMs)

31Part 1: Large Language Models (LLMs)

1

Document ingestion

2

User query, retrieval, and response generation

Knowledge Base (PDFs, ...) User

Preprocess Documents

Llamaindex

Chat Bot Web App

Documents User query

Embedding Model

Documents embeddings Query and embedded query

Vector DB

Prompt + query + retrieved enhanced context

LLM (potentially prompt-tuned)

LongChain + Llamaindex

Streamed text response (generative)

The process of obtaining reliable external data through techniques such as

, , and allows organizations to ensure

that the information being retrieved is both current and accurate.

web

scraping API integration document indexing

Good to know

RAG is among the most advanced techniques used to mitigate hallucinations. By

retrieving relevant information from a trusted source in real time, it allows to

significantly improve accuracy and avoid costly mistakes.

32Part 1: Large Language Models (LLMs)

Both RAG and fine-tuning are methods to enhance LLMs’ output and increase its

accuracy and relevance.

RAG enables you to inject real-time context into your prompts, tailored to your

ingestion strategy, providing dynamic, up-to-date insights to a deployed LLM.

In contrast, fine-tuning is confined to the static context and data present in the

model’s original training dataset.

Below is a brief overview of the main differences between the two techniques.

Fine-tuning RAG

Adaptation After the fine-tuning phase for a specific

task, LLMs become static.

RAG is an evolving system that can learn

from additional sources over time.

Data training Fine-tuning re-trains the parameters of a

model to optimize performance with new

data for a specific task. Unlike RAG,

however, this data needs to be prepped

and cleaned so that it can be used for

fine-tuning.

RAG adds information from external

sources related to a specific topic,

without changing the model's internal

parameters.

Versatility If a model hasn’t been fine-tuned for a

domain-specific task, it doesn’t have

sufficient knowledge to handle related

queries. For example, if the model is fed

with data consisting of legal employment

contracts, it can only answer questions

about work-related issues with legal

consequences.

RAG can augment the LLM with any

information source related to any domain

without re-training the model on a new

dataset and knowledge.

Catastrophic forgetting Fine-tuning an LLM for a new task can

lead to forgetting or losing previous

knowledge learned during the pre-

training phase.

Since RAG does not change the model’s

internal parameters, LLMs retain their

pre-training knowledge.

Computational requirements Fine-tuning a model requires extensive

computational resources and the use of

GPUs.

RAG-powered models can be resource-

intensive.

The difference between RAG and fine-tuning

33Part 1: Large Language Models (LLMs)

Function calling

Function calling lets LLMs connect to external tools, making them much more

versatile.

For instance, instead of guessing or relying on outdated information, the model

can fetch real-time data—like today’s weather in Paris or the latest euro-to-dollar

exchange rate—by tapping into the right APIs. This ensures users always get

accurate, up-to-date answers.

Let's say a user is asking the following question to the model:

What is the euro-to-dollar exchange rate today?

To handle this request using function calling, the first step is to define a currency

conversion function or set of functions that you will be passing as part of the

OpenAI API request:

tools = [

 {

: ,

: {

: ,

: ,

: {

: ,

: {

: {

: ,

},

: {

: ,

:

 }

 },

: []

 }

 }

 }

]

 "type"

 "function"

 "name"

 "description"

 "parameters"

 "type"

 "properties"

 "from_currency"

 "type"

 "description":

 "to _currency"

 "type"

 "description"

 "required"

"function"

"get_currency_exchange_rate"

"Get the current exchange rate between two currencies"

"object"

"string"

"The currency you want to convert from, e.g., 'EUR' for Euro"

"string"

"The currency you want to convert to, e.g., 'USD' for US Dollar"

"from_currency", "to_currency"

34Part 1: Large Language Models (LLMs)

The function returns the current exchange rate

between the specified currencies. When you pass this function definition as part of

the request, it doesn't actually execute a function but simply returns a JSON object

containing the arguments needed to call the function.

You can define a completion function as follows:

get_currency_exchange_rate

response = get_completion(messages, tools=tools)

def "gpt-3.5-turbo-1106" 0 300

None

return 0

 get_completion(messages, model= , temperature= , max_tokens= ,

tools=):

 response = openai. . . (

 model=model,

 messages=messages,

 temperature=temperature,

 max_tokens=max_tokens,

 tools=tools

)

 response. [].

chat completions create

choices message

This is how you can compose the user question:

messages = [

 {

 }

]

“role”:”user”,

 “content”:”What is the euro-to-dollar exchange rate today?”

You can call the function above and pass both the

messages and tools:

get_completion

The response object contains the following:

ChatCompletionMessage(content= , role= , function_call= ,

tool_calls=[ChatCompletionMessageToolCall(= ,

function=Function(arguments=’ ,

name=), =)])

None ’assistant’ None

’...’

{“from_currency”:”EUR”,”to_currency”:”USD”}’

’get_currency_exchange_rate’ ’function’

id

type

The arguments object contains are the arguments extracted by the model that are

required to complete the request.

You can then choose to call an external currency conversion API for the actual

exchange rate. Once you have the exchange rate information available, you can

pass it back to the model to summarize a final response based on the user

question.

35Part 1: Large Language Models (LLMs)

Key takeaway

Enhancing LLM performance comes down to choosing the right technique—or

combination of techniques—for your specific goals. RAG, fine-tuning, prompt

engineering, and function calling each offer unique benefits, and they’re not

mutually exclusive.

You might begin with RAG for real-time context and later fine-tune the model for a

highly specialized task. In some cases, prompt engineering or function calling

alone may meet your needs.

The key is to embrace an iterative approach of testing, learning, and refining to

achieve the best results.

Transcription accuracy: The hidden key to LLM success

LLMs are transforming product development, delivering unparalleled

advancements in performance through optimization techniques. But their

capabilities are only as strong as the data they process. When working with

spoken language, this means transcription accuracy is essential.

Errors in transcription can derail even the best LLMs, leading to outputs that

miss the mark. In the next chapter, we'll help you choose the right STT model or

provider to meet your specific needs and use case.

36Part 1: Large Language Models (LLMs)

“For us at Circleback, the key box that a speech recognition

provider needs to tick is transcription accuracy. If there are

errors or misattributions, things can break on the LLM side

and you'll end up with a bad output.”

Kevin Jacyna, Founder at Circleback

In the upcoming section, you'll learn:

The pros and cons of building in-house vs working with APIs,  

depending on your growth phase

Critical factors to evaluate when picking an STT provider, be it for  

async or real-time transcription

Key hosting and security consideration to take into account

37Part 2: Speech to Text

For a long time, the lack of fast, accurate, and low-cost transcription technology

has been a major obstacle to anyone looking to embed audio-related features into

their product.

But in parallel with LLM developments, speech-to-text (STT) models have been

becoming increasingly robust.

Speech-to-text technology has become both advanced and affordable, paving

the way for widespread adoption and unlocking opportunities to enhance

productivity and streamline workflows. For example�

�� Real-time AI can enhance the efficiency of �

�� AI-driven transcription and insights can elevate the effectiveness of �

�� LLM-powered AI assistants can deliver seamless, accurate �

�� can streamline editing and subtitle creation with time-

stamped transcriptions.

To understand how STT models and APIs can be optimized for success, let's first

briefly dive into the underlying mechanics that make state-of-the-art speech

recognition possible.

contact center agents

sales calls

note-taking

Media companies

Speech to Text
Part 2

A brief introduction to ASR systems

Speech to Text, also known as Automatic Speech Recognition (ASR), is a branch of

 that uses algorithms to analyze audio data

and convert spoken language into text.

Historically, ASR relied on mechanical or rule-based systems, such as phoneme

matching and statistical models like Hidden Markov Models (HMMs). Modern ASR

models, however, utilize advanced machine learning techniques, particularly deep

learning architectures like and .

Trained on large datasets, these models are mostly based on the

 that maps the input speech signal directly to the text without dividing

the recognition process into multiple steps.

This approach allows for greater accuracy and better contextual understanding

of language based on the semantic proximity of each given word. A notable

example of a seq2seq system is Whisper by OpenAI.

natural language processing (NLP)

RNNs, CNNs, Transformer models

seq2seq

architecture

Trained on 680,000 hours of multi-language data, Whisper became highly popular

among indie developers and businesses alike. Here’s why.

Transformer-based models like Whisper have a that

consists of an encoder-decoder framework and enables them to create content

based on the patterns learned from training datasets.

This architecture of ASR systems like Whisper enables the model to infer the

broader context of sentences transcribed and “fill in” the gaps in the transcript

based on this understanding. In addition, Whisper allows you to apply prompt

engineering techniques to improve its performance.

Thanks to this, Whisper achieves leading transcription accuracy and can detect

and translate speech in over 99 languages.

generative component

38Part 2: Speech to Text

Zoom-in: Whisper ASR by OpenAI

Whisper ASR Transformer Architecture (source: OpenAI)

While the open-source Whisper model offers impressive capabilities, it has

notable limitations that remain unresolved: hallucinations, inconsistent accuracy

in under-represented languages, and the lack of real-time transcription—an

essential feature for use cases like AI-powered agent assistance in call centers.

To address these challenges, some specialized providers – including Gladia with

 – have developed more robust and optimized ASR systems built on

open-source models, designed specifically for enterprise applications.

This brings us to a critical decision for your team: should you host an in-house

solution or outsource your speech-to-text needs to a commercial provider?

Let’s explore this decision together.

Whisper-Zero

39Part 2: Speech to Text

https://www.gladia.io/whisper-zero

40Part 2: Speech to Text

Open Source vs API for voice apps

When it comes to implementing an ASR system into your product, you have a range

of options, from building an in-house solution to turning to a BigTech or specialized

provider.

Building in-house usually entails using an open-source model while using a model-

as-a-service API means working with a commercial provider.

Each approach has its advantages and drawbacks, and the right choice will depend

on your specific business goals and use case.

Like with LLMs, the open source ASR ecosystem has been on the rise. Among the

most popular open-source STT models today are , , and

.

While open source has been a massive driver in the proliferation of voice platforms

and apps, adopting them for enterprise use cases is not always recommended.

Say you’re thinking of hosting Whisper in-house. First, you need to take into

account the required to host, optimize, and

maintain it as your audio volumes scale and roadmap features multiply.

There are a number of costs contributing to the TCO, including hosting (CPUs/

GPUs), network, security software, human capital, and certification.

As a result of all these expenses, the TCO of Whisper can amount to anything

 per year, depending at what stage your business finds

itself.

Even if you have the budget for it, you need to assess whether this is actually the

best use of your resources. After all, transcription is not your core source of

differentiator, and you need to treat it accordingly.

Whisper DeepSpeech

Wav2vec

total cost of ownership (TCO)

from $300k to $2 million

Building in-house with an open-source model

https://www.gladia.io/blog/best-open-source-speech-to-text-models
https://www.gladia.io/blog/how-much-does-it-really-cost-to-host-open-ai-whisper-ai-transcription

41Part 2: Speech to Text

RCF Framework: Risk-cost-focus of self-hosting

If you're in the early stages of finding product-market fit and transcribing

, hosting Whisper in-house may

make sense. At this volume, costs are manageable, and while the vanilla

model lacks optimizations, features, and accuracy in certain scenarios, it’s

good enough for proof-of-concept work.

The trade-offs? Whisper’s tendency to hallucinate, limited support for

features like diarization, and formatting inconsistencies. However, these

downsides are usually acceptable for low-stakes prototyping.

less than 5,000 hours of audio per month

Early Stage: Prototyping and Validation (<5k hours/month)

Growth Phase: Scaling Usage (5k–15k hours/month)

When transcription volumes rise to , the

equation changes. Costs increase as you’ll need full-time employees to�

�� Optimize the model (e.g., adding features, improving accuracy, and

mitigating hallucinations)�

�� Maintain the infrastructure, which becomes increasingly complex with

scaling demands�

�� Implement features like diarization, requiring ~20% additional compute

power.

Parallel transcription requests will also surge, necessitating on-demand GPU

availability—significantly more expensive than reserved instances—alongside a

robust queuing system.

At this stage, hosting in-house is rarely worth the effort. Your resources are

limited, and market pressures demand you focus on your platform’s core

differentiators, not on perfecting transcription infrastructure.

5,000–15,000 hours per month

42Part 2: Speech to Text

Scale-Up and Beyond: Enterprise Level (>15k hours/month)

For platforms transcribing over , transcription

becomes core to your business operations. While you likely have the budget to

host in-house—easily exceeding $2M annually—consider whether it’s the best

strategy.

The pace of innovation in ASR technology is rapid. Maintaining an in-house

team dedicated to keeping up with advancements may detract from delivering

a reactive, competitive roadmap for your core product.

All in all, outsourcing your transcription needs to specialized STT providers is

a more viable option today for scaling platforms, enabling faster time-to-

market and wiser allocation of resources to the core features of your platform.

15,000 hours per month

According to the Gartner Generative AI 2024 Planning

Survey, are buying GenAI

capabilities from either an existing or new vendor.

72% of functional leaders

Opting for Big Tech or specialized provider

The commercial landscape for speech-to-text APIs today consists of the big cloud

providers , , and

, the famous outlier , and specialized contenders like ,

, , and others.

Unlike open-source models, these solutions come in the form of plug-and-play API,

helping to significantly shorten your time-to-market. Specialized providers work with

best-in-class ASR models, which they maintain and optimize over time – which comes

at a price, of course.

Big Tech’s speech-to-text solutions in particular, provided as part of their wider suite

of services, are usually the most expensive on the market and generally perform

slower.

Amazon Web Services (AWS) Google Cloud Platform (GCP) Microsoft

Azure OpenAI Gladia Assembly

AI Deepgram

https://www.gartner.com/peer-community/oneminuteinsights/omi-2024-generative-ai-planning-how-it-organizations-preparing-zxm
https://www.gartner.com/peer-community/oneminuteinsights/omi-2024-generative-ai-planning-how-it-organizations-preparing-zxm

43Part 2: Speech to Text

In terms of accuracy, BigTech providers generally have a WER of .
Compare this to most specialized providers that are within the range, and
offer more affordable options with custom discounts for large scale customers.

10%-18%
1-10%

Key takeaway

Every speech-to-text provider comes with trade-offs you’ll need to consider.
Higher accuracy often means sacrificing speed, while enhanced features like
speaker diarization, sentiment analysis, or advanced security certifications can
further drive up costs and slow processing times. Balancing these factors is
crucial to finding a solution that aligns with your needs, budget, and performance
expectations. It is imperative to first examine your user base, vertical and
roadmap, as this will help you select a vendor able to strike the right balance for
your use case.

In the following section, we dive into the key factors to consider when evaluating an
STT vendor, with a dedicated checklist at the end of this chapter.

To recap the OSS vs APIs debate, here’s a summary table:

Open-source Commercial providers

􀙅 In-house expertise Good option for companies with a strong
in-house AI fleet, which includes a
dedicated DevOps division.

Suitable for companies that lack
hardware and/or AI expertise, but still
want to embed advanced AI features into
their product. Any developer can use an
API without needing any additional AI
expertise.

􀌆 Customization You’re in full control of your data and can
make tweaks depending on your
business needs.

The majority of API providers offer an
extensive set of out-of-the-box features
that you pick from, usually at additional
cost.

44Part 2: Speech to Text

Open-source Commercial providers

􀢆 Scalability Since commercial APIs tend to be

powered by several, optimized models,

replicating the same with open-source

models — which tend to be smaller and

more narrow in their scope — can be

challenging.

With APIs, you don’t need to commit to a

specific volume of audio data in advance.

You can scale at a reasonable cost as

you grow since the overall load is shared

by multiple users.

􀖘 Cost While the models themselves are often

free to access, infrastructure,

development and maintenance costs will

certainly make their way into the bill.

The absence of hardware requirements

is good news for your budget, however,

the API market doesn’t always strike the

right quality-price balance for enterprise-

grade clients, which can result in high

costs for some use cases.

􀐬 Time and resources Production-ready models usually take

one year to be ready for deployment.

Given the current pace of AI, models are

becoming obsolete after a couple of

years (if not months), and you’ll soon

need additional capital reinjection.

Having an external vendor doing the pre-

integration for you will save you time and

money. In addition, by working with an API

provider, you can benefit from the

knowledge of the whole market, since

issues raised by other clients are used to

improve the product.

Key factors to consider when picking a STT provider

The performance of an STT model combines many factors, among others�

�� (batch vs real-time�

�� �

�� , such as speaker diarization, custom vocabulary, and sentiment
analysi�

��

�� , including deployment and maintenance
requirements

Let’s take a closer look at them.

Latency

Accuracy

Features

 Language suppor�

Security and regulatory compliance

45Part 2: Speech to Text

When building a voice platform or app, one of your first questions will be

determining the type of transcription best suited to your product and use case.

The key distinction between asynchronous (async) and real-time transcription lies

in how quickly the transcription is generated and how it processes audio in

relation to the speech.

, often called "batch" processing, involves sending audio files

for transcription, with results taking several minutes to hours depending on file

length and complexity.

, on the other hand, processes audio instantly, making it

essential for use cases requiring immediate response, such as conversational

bots or live captions for conferences and videos. It demands low latency, with

industry standards ranging from 100 milliseconds to 1 second.

For example, Gladia's real-time API achieves latency under 300 milliseconds,

making it ideal for applications like contact center solutions, media platforms, and

AI voice assistants.

Async transcription

Real-time transcription

Key takeaway

Historically, choosing between async and real-time transcription involved

balancing speed, quality, and cost. Achieving batch-quality accuracy in real-time

often required running both modes in parallel, leading to significant expenses.

Today, advancements in real-time AI offer both speed and accuracy, though it

comes at a higher cost due to the computational demands. For critical

applications like contact centers, real-time transcription is indispensable for

resolving customer issues instantly. Meanwhile, AI meeting assistants often find

async transcription sufficient for their core functions.

Latency

46Part 2: Speech to Text

Features

On top of the core functionality of transcribing audio to text, STT providers are

developing additional features that make transcripts easier to digest and can

provide insights from the audio data.

Let’s take a closer look at some of the most popular features among LLM-based

voice platforms.

Also known as speaker separation, diarization allows one to attribute what’s been

said in a call or meeting to a specific person.

Diarization Error Rate (DER) is the most common metric to evaluate speaker

diarization accuracy. DER is calculated by summing the time duration of three

distinct errors: speaker confusion, false alarms, and missed detections. This total

duration is then divided by the overall time span.

Gladia's partner, pyannoteAI, is an industry leader in this area, with diarization

models that boast one of the highest precision levels and state-of-the-art

solutions for voice AI, including overlapping speech detection.

Speaker diarization

Custom vocabulary

Many industries rely on specialized terminology, brand names, and unique

language nuances. Custom vocabulary integration allows the STT solution to

adapt to these specific needs, which is crucial for capturing contextual nuances

and delivering output that accurately reflects your business needs.

Why it’s useful

To generate speaker-based transcription and enable effective indexing, analysis

and search of audio content for your users.

https://www.gladia.io/blog/gladia-speech-to-text-api-speaker-diarization
https://pyannote.ai/

47Part 2: Speech to Text

For instance, it allows you to create a list of domain-specific words, such as brand

names, in a specific language.

Named entity recognition (NER)

Key Data Extraction (KDE)

NER extracts and identifies key information from unstructured audio data, such as

names of people, organizations, locations, and more. A common challenge with

unstructured data is that this critical information isn’t readily accessible—it's buried

within the transcript.

To solve this, Gladia developed a structured approach.

By leveraging the generative capabilities of its Whisper-based architecture—similar

to LLMs—Gladia’s KDE captures context to identify and extract relevant

information directly.

This process can be further enhanced with features like custom vocabulary and

NER, allowing businesses to populate CRMs with key data quickly and efficiently.

Why it’s useful

Adapting the transcription to the specific vertical allows you to minimize errors in

transcripts, achieving a better user experience. This feature is especially critical in

fields like medicine or finance.

Why it’s useful

Having key information like names, companies, and addresses enables automatic

CRM enrichment, boosting user productivity and saving time.

48Part 2: Speech to Text

Additional features to consider�

�� : Categorizes content into predefined topics for easier

content indexing�

�� : Analyzes the sentiment behind audio recordings to

improve customer experiences and sales performance�

�� : Flags inappropriate or offensive speech, such as hate

speech, based on customizable parameters.

Depending on your use case, you might need some or all of these features

alongside transcription. You can opt for a one-stop-shop provider that supports all

these functionalities or choose a provider with the best core transcription

capabilities and customize the additional features you need.

Below is an overview of the features Gladia’s API supports, offering flexibility and

efficiency tailored to your business needs.

Topic classification

Sentiment analysis

Speech moderation

Transcription

Diarization

Word-level timestamp

Code-switching

Noise reduction

Smart formating

Translation

Features

Summarization

Topic classification

Chapterization

Keyword extraction (NER)

Emotion detection

Sentiment analysis

Security

Encryption

Moderation

PII redaction

Certification

Custom hosting

49Part 2: Speech to Text

For businesses operating in customer service — for instance contact centers —

maintaining accuracy amidst varying audio quality and background noise is

essential. A transcription solution must adapt to challenging environments such as

low-quality calls, network disruptions, and diverse speaker accents.

 is a widely used metric for assessing the accuracy of ASR

technologies. It provides a standardized way to compare different speech-to-

text (STT) models and providers, helping organizations evaluate their options.

Word Error Rate (WER)

WER measures the percentage of words in the output that differ from the words in

the reference or ground truth text. A lower WER indicates better performance of

the system and vice versa.

However, WER has notable limitations, particularly when applied to real-world

enterprise scenarios. While designed to measure accuracy against an 'ideal'

academic benchmark, WER often falls short in reflecting performance in practical

use cases. In professional environments, the critical factor is not overall

transcription accuracy but the precision of key elements—such as names,

addresses, or other specific data—used for downstream processes like CRM

enrichment.

Standardized benchmarks like WER rarely capture this nuance. Disregarding a

model solely based on its WER score could mean overlooking a solution that,

with customization, performs exceptionally well for your specific needs.

Accuracy

50Part 2: Speech to Text

When choosing an ASR provider, impeccable accuracy often comes with trade-offs

in speed and cost. However, not every use case demands perfect transcription.

For example, podcast editing, subtitling, or translation workflows often prioritize

accuracy over speed. Conversely, applications like summarization—where AI distills

key insights from spoken content—may tolerate minor transcription errors as long

as the core message remains clear.

It’s essential to go beyond standardized metrics like WER when assessing

accuracy. Instead, focus on how well the ASR system performs in real-world

conditions, such as handling background noise, diverse speaking styles, and a

variety of languages and accents. Using your own datasets during evaluation can

provide a more accurate representation of how the system will function in your

specific environment.

Key takeaway

When selecting an ASR provider, it’s crucial to look beyond WER and evaluate

how well a model addresses the unique demands of your use case. Balance your

accuracy needs with the trade-offs in speed and cost while keeping your use

case in mind. By evaluating ASR systems under realistic conditions and tailoring

metrics to your requirements, you can ensure the chosen solution aligns with

both your operational goals and end-user expectations.

Language support

Most ASR models lean heavily towards certain languages because of the

datasets they were trained on, or because they assign uneven weight to certain

parameters in the transcription process.

Some of them perform well exclusively with English and the 30 most commonly

represented languages in written media, with varying WER indicators across

languages.

Not everyone needs 100% accuracy

51Part 2: Speech to Text

A few providers, like Gladia, cover 100+ languages and handle multiple accents,

asynchronously as well as interchangeably in real-time through code-switching.

Key takeaway

When selecting an STT provider, ensure it performs well across all relevant

languages, accents, and dialects. Providers may claim broad language support,

but real-world performance can vary, so thorough internal testing is essential.

"Working with Gladia has opened up new geographies to us.

We've acquired new users in countries like Finland and

Sweden, who say it's the best transcription they ever tried

and want to implement Spoke across their global teams

thanks to that. Gladia has a clear-cut advantage when it

comes to European languages"

Lazare Rossillon, CEO & Co-founder at Meeting BaaS and Spoke

Security and regulatory compliance

Given the highly confidential nature of enterprise audio data, it’s becoming

increasingly important to verify how a provider approaches data privacy.

52Part 2: Speech to Text

Enquire with your STT provider about any security-related certifications they have,

including , and or , validating that

the company has appropriate security and compliance processes in place.

Furthermore, here are additional security-related techniques that can be applied to

protect your audio data�

�� Encryption. Helps to protect sensitive or confidential information contained in

audio files, such as customer data, trade secrets, or intellectual property�

�� Speech moderation. Allows to automatically identify and flag hate speech or

other inappropriate and offensive verbal content based on predetermined

parameters, internal protocols, or external regulations.�

�� Anonymization of Personally Identifiable Information (PII). Also known as PII

redaction, is used to detect, tag and remove any personally identifying

information, such as an address, card number, SSN, phone number, and more.

While it’s true that self-hosting is the absolute safest option when it comes to

data privacy, the level of security provided by commercial providers is achieving

comparable levels.

Besides certification and features, hosting architecture options offered by your

provider can further protect your data, as explained below.

SOC 2 Type 1/Type 2, HIPAA ISO 27001 ISO 27701

Hosting in the cloud, on-premise, or air gap

If you want to embed the speech recognition system in your existing tech stack,

you need to decide where the underlying network infrastructure should be located,

and who you want to own it.

53Part 2: Speech to Text

Cloud multi-tenant (SaaS)

All users share the same hardware and software, as well as the same instance of

the software, which is provided by a third-party provider that oversees installation,

maintenance, software upgrades, and potential patches.

Pros This option is the most scalable hosting solution, enabling your company to

easily add more users and scale the volume of audio on a pay-as-you-go

basis. Regular software updates and patches are part of the package, and

you don’t need to worry about maintenance or upkeep costs.

Cons Like with any third-party solution, potential safety hazards in the case of a

cloud security breach may make this option less suitable for industries

with strict privacy and compliance protocols.

Cloud single-tenant

The concept of cloud single-tenant is similar to multi-tenant, except that it has a

dedicated cloud infrastructure per client, managed by an external provider. That

means each user has access to their own instance of the software.

Pros This setup includes a higher level of security and better governance since

the virtual network is reserved for a single user.

Cons As with multi-tenant, data security and privacy is dependent on the

provider. It also comes with higher costs.

54Part 2: Speech to Text

On-premise

Licensed software is hosted on client-controlled data centers, in an exclusive

physical and virtual network that tends to be managed by the company’s IT

department or a third-party provider.

Pros With this setup, you have full control over what happens to company data

Cons Significant upfront deployment costs. In addition, service-level

agreements (SLAs) and other commitments need to be managed

internally.

Air gap

Works pretty much like on-premise, except that no third-party providers can access the

system since it’s completely isolated, even from the internet.

Pros This approach offers an optimal level of protection for high-security

facilities with stringent internal protocols.

Cons In the case of a local issue, such as a natural disaster or business

interruption, it can take a lot of time to recover and get back on track.

55Part 2: Speech to Text

Key takeaway

When choosing between on-premise and cloud-based ASR hosting, consider

factors like scalability, cost, and security. While on-premise solutions offer control

and potentially better latency, they come with high deployment and maintenance

costs and limited scalability. Cloud-based options provide greater flexibility, lower

upfront costs, and easy scaling, with security concerns easily addressed by

reputable providers. The right choice depends on your business’s needs, growth

potential, and resources.

For the last two years, we’ve worked closely with companies experimenting with the

powerful combination of LLMs and ASR models to create pioneering voice platforms and

apps. Time and again, they’ve shared how accurate transcription and advanced language

modeling working hand-in-hand are critical to achieving exceptional results.

Drawing on our research and insights from real-world implementations, we’ve compiled

practical strategies to help you maximize the potential of both technologies. These quick

tips are designed to help you avoid common pitfalls, and deliver the best of both worlds.

Bridging LLMs and ASR: Best practices for
building voice apps and audio features

Keep reading to discover:

A checklist to evaluate and optimize your LLM and ASR integrations

5 best practices from LLM experts for improving performance

56Checklist: Planning and evaluating STT and LLMs for your voice app

Planning and evaluating STT
and LLMs for your voice app

Checklist

This checklist is designed to guide CTOs, developers, and product managers

through the foundational steps of planning and evaluating tools to build voice

apps and add audio features to existing products. It focuses on critical early-stage

decisions, and should be used as a starting point before moving into development

and implementation.

Step 1: Define objectives and use cases

Clearly define the goals of your voice app, and map these to features

Identify your target users and the problems the app will solve

Outline how you will measure success
Ex: accuracy rates, user adoption, improved operational efficiency, etc.

Step 2: Make the buy vs. build decision

Estimate infrastructure costs, time to deploy, scalability, and ongoing

maintenance for both options

Consider building in-house if…

You have the in-house expertise to implement and maintain custom solutions

Open-source tools meet your needs without needing extensive customization

Long-term scalability is manageable with your internal resources

57Checklist: Planning and evaluating STT and LLMs for your voice app

Consider using APIs if…

Speed to market is a priority

Your team lacks the hardware or expertise to manage custom solutions

You want a scalable and low-risk solution with ongoing improvements

Step 3: Evaluate and select tools

Questions to ask when evaluating LLMs:

What type of model best fits our needs—open-source or proprietary?
Consider customization requirements, cost, and in-house expertise.

How does the model perform in our key use cases?
Review benchmarks like TruthfulQA or HumanEval to assess performance in tasks like summarization, sentiment

analysis, or text generation.

What is the cost structure for this LLM?
Understand token-based pricing, fine-tuning costs, and whether free credits are available for testing.

Does the model support our required languages and dialects?
If multilingual support is critical, evaluate the accuracy and language coverage.

What are the security and compliance standards?
Confirm whether the provider meets SOC 2, GDPR, or other relevant certifications.

Can this model handle our anticipated data volume and growth?
Check if the model's context window size and infrastructure can support scaling.

Questions to ask when evaluating STT systems:

What is the system’s accuracy and Word Error Rate (WER)?
Compare WER metrics and test performance under real-world conditions like noisy environments and multiple

speakers.

Does the system offer advanced audio intelligence features?
Consider features like speaker diarization, sentiment analysis, custom vocabulary, and code-switching for

multilingual conversations.

What are the latency capabilities?
For real-time applications, confirm whether the system meets low-latency requirements without sacrificing accuracy.

58Checklist: Planning and evaluating STT and LLMs for your voice app

How well does the system support multiple languages and accents?
Test language detection and transcription accuracy for your target audience.

What is the pricing model?
Understand whether pricing is usage-based (per hour or per token) and ensure it aligns with your budget and

scalability needs.

What deployment options are available?
Determine if the system can be hosted in the cloud, on-premise, or in an air-gapped environment to meet your

security requirements.

59Part 3: 5 best practices for using STT and LLMs for voice apps

5 best practices for using
STT and LLMs for voice apps

Part 3

As you know all too well, LLM-powered features of voice apps are directly

dependent on initial transcription quality.

Choosing a top-tier STT provider is the first step to avoiding problems down the

line. But while transcription APIs have certainly reached unprecedented levels of

accuracy in the last few years, it may in some instances be helpful to further

enhance the quality of your transcripts with the help of LLMs.

Here are some of the most common techniques used to that end.

Practice #1

Use LLMs to improve STT output and diarization

�� Domain-specific adaptations

LLMs fine-tuned on domain-specific data can , technical

terms, or industry-specific phrases and for

specialized vocabulary.

Take healthcare as an example. ASR systems are now commonly used in clinical settings

to transcribe doctor-patient interactions into written records and prescriptions. To ensure

ultimate information fidelity and avoid critical mistaked, LLMs rained in medical

terminology can be integrated into the post-processing of medical records and correct

errors and/or hallucinations in transcriptions, ensuring that specific terms (e.g. drug

names) are transcribed perfectly.

recognize and correct jargon

generate context-based suggestions

https://arxiv.org/pdf/2402.07658
https://arxiv.org/pdf/2402.07658

60Part 3: 5 best practices for using STT and LLMs for voice apps

�� Correcting errors and rephrasing

Because LLMs are typically trained on larger amounts of data than ASR models, they are

better suited to identify more complex language patterns, context, and syntax. This makes

them useful in spotting errors in transcripts, including

 and .

misheard words, homophones,

grammar issues filler words

�� Correcting punctuation

While most commercial providers do addres this issue at least to some extent, ASR

systems can produce transcription output with imperfect punctuation or sentence

boundaries. LLMs can be used to

, and based on sentence context and improve readability.

add paragraph breaks, capitalization, commas,

periods question marks

�� Improving speaker diarization

For applications such as contact centers and meeting note-taking apps, knowing who

spoke when and what is crucial. As per latest research, LLMs can leverage contextual

hints to post-process the outputs from a speaker diarization system and

, and even .

improve

transcript readability, reduce DER autofill speaker names and roles

When working with LLMs, try to combine multiple models for the optimal results. You can

break tasks down into manageable chunks and assign them to different models

depending on their capabilities and your objectives.

For instance, a more powerful model can orchestrate a complex task, while smaller

models can handle minor ones. In the case of a note-taking app, a more powerful model

would be used to generate complex or perform , while a

smaller model fills in details and performs tasks such as fact-checking and

.

summaries sentiment analysis

cross-

referencing

Practice #2

Divide and conquer with a multi-model approach

https://arxiv.org/abs/2401.03506

61Part 3: 5 best practices for using STT and LLMs for voice apps

Fine-tuning is a great technique for improving a model’s output, especially in specialized

domains. However, it requires substantial computational resources and is heavily

dependent on the data you're using—so collecting, cleaning, and preprocessing the right

data can be a significant part of the process.

According to founders we interviewed in the note-taking domain,

. Prompt engineering doesn’t require access to

specialized hardware or large datasets — you can often substantially improve output by

experimenting with different prompts and playing around with various models.

As many of customer’s success stories show, some amazingly advanced AI assistants can

be developed with prompt engineering alone.

Here are some best practices when it comes to prompt engineering:

prompt engineering is

generally a better starting point

Practice #3

Don’t resort to fine-tuning too early

Some of our clients noted good performance when using Anthropic’s for

smaller tasks and for more complex operations.

Haiku 3.3

Claude 3.5

�� Don’t settle for the first acceptable result

Prompt engineering requires iterative experimentation and model-specific

adjustments.

A multi-model approach doesn’t always imply a higher cost, especially for SMEs.

Many providers offer free credit that you can use to test out different LLMs. Amazon

Web Services (AWS), for instance, recently expanded its free credits program for

startups to cover the costs of using major AI models, including Anthropic, Meta,

Mistral AI, and Cohere.

62Part 3: 5 best practices for using STT and LLMs for voice apps

�� Provide examples in your prompt and leverage metadata

Give examples to point towards desired outputs and include key metadata such as

speaker identification, timing information, and any additional context (CRM

enrichment, for example).

Keep in mind that models and their architectures tend to be quite different.

Something can work with one model but not very well with another. You need to

make up for that in your prompts and tweak them for each model.

When building products with LLMs, it’s crucial to align the model's context window

capabilities with the task requirements.

�� Try various models and prompting techniques

Reiterate and experiment. One of the techniques that performed well for our

clients is chain-of-thought (CoT) prompting, discussed previously.

Practice #4

Be mindful of context window size

“When evaluating a model's context window, it's

important to consider both the input and output lengths

as these factors have a significant impact on how well it

performs for certain tasks.”

Lazare Rossillon, CEO & Co-founder at Meeting BaaS and Spoke

63Part 3: 5 best practices for using STT and LLMs for voice apps

Models like , with a 2-million-token input context window,

excel at tasks needing vast input processing, such as . However, its

8,192-token output limit can pose challenges for tasks requiring extensive outputs,

like , where risks of misalignment or hallucinations increase.

In contrast, models like offer smaller, more balanced context windows

(4,000–20,000 tokens) that may better suit tasks like real-time conversation or

coding assistance.

Some quick tips to address this�

�� Break complex tasks into smaller, manageable subtasks that fit within output

token constraints. For example, split long translation tasks into sentence-level

chunks to prevent autoregressive errors.�

�� Implement guardrails like constraining token prediction space or evaluating

intermediate outputs for coherence. When large input contexts are

unnecessary, preprocessing strategies such as chunking or prioritizing key

sections can reduce computational costs and latency�

�� Experiment with different models to identify the best fit for your use case.

Google’s Gemini 1.5 Pro

summarization

translation

ChatGPT-4

Context windows suffer from language bias, as the

. This disparity is especially

dominant for under-represented languages, where it may take more tokens to

convey the same information.

Take Hindi as an example. In English, a single word might be represented by one

token, but in Hindi, the same word could require four tokens. As a result, models

working with Hindi are four times slower, less precise, and must generate a

significantly larger number of tokens to achieve the same outcome as when

working with English.

number of tokens required to

represent a concept or word varies across languages

Practice #5

Don’t forget context windows' language bias

64Part 3: 5 best practices for using STT and LLMs for voice apps

“When dealing with under-represented languages, the context

window size is effectively reduced. If a model supports an

8,000-token context window in English, the equivalent input for

Hindi might only be around 2,000 tokens. The disparity

becomes even more evident in the output.”

Jean-Louis Queguiner, Co-founder and CEO at Gladia

If you’re working with under-represented languages, here are some techniques to

try besides fine-tuning the model�

�� Choose models trained on tokenizers, optimized for compact representations

of specific languages, helping to reduce the token disparity�

�� Optimize input preprocessing to remove unnecessary tokens, such as

reducing verbose expressions, simplifying syntax, or eliminating non-essential

metadata�

�� Break large texts into language-specific chunks and process them

independently to ensure efficient use of the context window.

Conclusion
Large Language Models (LLMs) and Speech to Text (STT) technologies hold

incredible potential for building advanced voice apps. As outlined in this guide,

leveraging these tools effectively requires a deep understanding of their strengths,

limitations, and best practices.

65Conclusion

Key insights from this guide

�� We explored the wide range of LLMs available, from open-source solutions

to proprietary options, and how they can be optimized for top performance through

techniques such as prompt engineering, fine-tuning, and RAG to address

challenges like hallucinations, limited context windows, and language biases�

�� From in-house, open-source models to APIs from specialized providers, we

examined the key factors for selecting the right STT system for your needs,

including latency, accuracy, features, and regulatory compliance�

�� Implementing voice applications successfully can be achieved through

a combination of best practices, such as using LLMs to enhance STT outputs,

adopting a multi-model approach, avoiding premature fine-tuning, and staying

mindful of the context window and language biases.

LLMs:

STT:

LLM x ASR:

Final thoughts

Building with LLMs and STT technologies offers unparalleled opportunities to create

intelligent, engaging, and responsive voice applications. Whether you’re developing

solutions for meeting notes, customer service, or next-generation conversational AI,

the insights from this guide provide a solid foundation to get started.

The future of voice-powered platforms is full of potential — and you’re now equipped to

lead the charge. Start building, innovating, and shaping the next era of AI-driven voice

applications today.

About Gladia
From async to live streaming, Gladia’s API empowers your platform with accurate,

multilingual speech-to-text and actionable insights.

Over 100,000 users and 600 enterprise customers, including Attention, Ausha,

Circleback, Method Financial, Recall, and VEED.IO trust us to deliver fast and

accurate transcriptions that can be easily scaled and integrated into existing tech

stacks.

With Gladia, you can accelerate your roadmap with top-tier models for speech

recognition and analysis, with industry-leading performance�

� Latency: Less than 300 ms to transcribe a call or meeting in real-time, with

minimal additional latency to generate summaries and extract insights�

� Accuracy: Speech recognition without errors and hallucinations for ultimate

information fidelity�

� Language support: Multilingual transcription and insights with enhanced

support for accents, translation and code-switching�

� Easy integration: Our API is compatible with WebSockets, VoIP, SIP, and all

other standard telephony protocols and integrate seamlessly with any stack�

� High security: We guarantee 100% safety of all user data per EU and US

regulations and compliance frameworks.

66About Gladia

Request a personalized demo to see our product in action.

See a demo

More information can be found at Gladia’s X or LinkedIn.

https://www.gladia.io/demo-request
https://x.com/gladia_io
https://www.linkedin.com/company/gladia-io/posts/?feedView=all

